- Designed for 315 MHz Transmitters
- Nominal Insertion Phase Shift of $18 \mathbf{0}^{\circ}$ at Resonance
- Quartz Stability
- Rugged, Hermetic, Low-Profile TO39 Case

The RP1239 is a two-port, 180° surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization of low-power AM and FSK transmitters operating at 315.0 MHz for use in the United Kingdom under DTI MPT 1340 and in the USA under FCC Part 15. Applications include remote-control and wireless security devices. This is a pin-for-pin replacement in preexisting transmitter circuits utilizing two-port, 180° SAW resonators.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation (See: Typical Test Circuit)	+0	dBm
DC Voltage Between Any Two Pins (Observe ESD Precautions)	± 30	VDC
Case Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency Absolute Frequency	f_{C}	2, 3, 4, 5,	314.925		315.075	MHz
Tolerance from 315.000 MHz	$\Delta \mathrm{f}_{\mathrm{C}}$				± 75	kHz
Insertion Loss	IL	2, 5, 6		5.3	8.5	dB
Quality Factor Unloaded Q	Q_{U}	5, 6, 7		18,000		
50Ω Loaded Q	Q_{L}			8,100		
Turnover Temperature Turnover Frequency Frequency Temp. Coefficient	To	6, 7, 8	37	52	67	${ }^{\circ} \mathrm{C}$
	f_{0}			$\mathrm{f}_{\mathrm{C}}+8.5$		kHz
	FTC			0.037		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}^{2}$
Frequency Aging Absolute Value during First Year	$\left\|f_{A}\right\|$	6		≤ 10		ppm/yr
DC Insulation Resistance between Any Two Pins		5	1.0			$\mathrm{M} \Omega$
RF Equivalent RLC Motional Resistance	R_{M}	5, 7, 9		84	167	Ω
Motional Inductance	L_{M}			758.027		$\mu \mathrm{H}$
Motional Capacitance	C_{M}			0.336771		fF
Shunt Static Capacitance	C_{0}	5, 6, 9	1.9	2.2	2.5	pF
Lid Symbolization (in addition to Lot and/or Date Codes)	RFM P1239					

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

Notes:

1. Frequency aging is the change in f_{C} with time and is specified at $+65^{\circ} \mathrm{C}$ or less. Aging may exceed the specification for prolonged temperatures above $+65^{\circ} \mathrm{C}$. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
2. The frequency f_{C} is the frequency of minimum IL with the resonator in the specified test fixture in a 50Ω test system with VSWR $\leq 1.2: 1$. Typically, $\mathrm{f}_{\text {OSCILLATOR }}$ or $\mathrm{f}_{\text {TRANSMitTER }}$ is less than the resonator f_{C}.
3. One or more of the following United States patents apply: 4,454,488; 4,616,197.
4. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
5. Unless noted otherwise, case temperature $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
6. The design, manufacturing process, and specifications of this device are subject to change without notice.
7. Derived mathematically from one or more of the following directly measured parameters: $\mathrm{f}_{\mathrm{C}}, \mathrm{IL}, 3 \mathrm{~dB}$ bandwidth, f_{C} versus T_{C}, and C_{O}.
8. Turnover temperature, T_{O}, is the temperature of maximum (or turnover) frequency, f_{O}. The nominal frequency at any case temperature, T_{C}, may be calculated from: $f=f_{0}\left[1-F T C\left(T_{O}-T_{C}\right)^{2}\right]$. Typically, oscillator T_{O} is 20° less than the specified resonator T_{O}.
9. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_{0} is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground. The measurement includes case parasitic capacitance.

Electrical Connections

This two-port, three-terminal SAW resonator is bidirectional. However, impedances and circuit board parasitics may not be symmetrical, requiring slightly different oscillator component-matching values.

Pin	Connection
1	Input or Output
2	Output or Input
3	Case Ground

Typical Test Circuit

Electrical Test

CW RF Power Dissipation $=\mathrm{P}_{\text {INCIDENT }}{ }^{-} \mathrm{P}_{\text {REFLECTED }}$

Typical Application Circuits

This SAW resonator can be used in oscillator or transmitter designs that require 180° phase shift at resonance in a two-port configuration. Oneport resonators can be simulated, as shown, by connecting pins 1 and 2 together. However, for most low-cost consumer products, this is only recommended for retrofit applications and not for new designs.
Conventional Two-Port Design: Simulated One-Port Design:

Case Design

Equivalent LC Model

The following equivalent LC model is valid near resonance:

Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.

Typical Frequency Response

The plot shown below is a typical frequency response for the RP series of two-port resonators. The plot is for RP1094.

Dimensions	Millimeters		Inches	
	Min	Max	Min	Max
A		9.40		0.370
B		3.18		0.125
C	2.50	3.50	0.098	0.138
D	0.46 Nominal		0.018 Nominal	
E	5.08 Nominal		0.200 Nominal	
F	2.54 Nominal		0.100 Nominal	
G	2.54 Nominal		0.100 Nominal	
H		1.02		0.040
J	1.40		0.055	

